Truncations of Haar distributed matrices, traces and bivariate Brownian bridges

نویسندگان

  • Catherine Donati-Martin
  • Alain Rouault
  • A. ROUAULT
چکیده

Let U be a Haar distributed matrix in U(n) or O(n). We show that after centering the two-parameter process W (s, t) = ∑ i≤⌊ns⌋,j≤⌊nt⌋ |Uij | 2 converges in distribution to the bivariate tied-down Brownian bridge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncations of Haar Distributed Matrices, Traces and Bivariate Brownian Bridge

Let U be a Haar distributed matrix in U(n) or O(n). We show that after centering the two-parameter process W (s, t) = ∑ i≤⌊ns⌋,j≤⌊nt⌋ |Uij | 2 converges in distribution to the bivariate tied-down Brownian bridge.

متن کامل

Random Truncations of Haar Distributed Matrices and Bridges

Let U be a Haar distributed matrix in U(n) or O(n). In a previous paper, we proved that after centering, the two-parameter process T (s, t) = ∑ i≤⌊ns⌋,j≤⌊nt⌋ |Uij | 2 converges in distribution to the bivariate tied-down Brownian bridge. In the present paper, we replace the deterministic truncation of U by a random one, where each row (resp. column) is chosen with probability s (resp. t) indepen...

متن کامل

On the Moments of the Traces of Unitary and Orthogonal Random Matrices

The complicated moments of the traces of unitary and orthogonal Haar distributed random matrices are studied. The exact formulas for different values of moment and matrix orders are obtained.

متن کامل

Central Limit Theorems for the Brownian motion on large unitary groups

In this paper, we are concerned with the largeN limit of linear combinations of entries of Brownian motions on the group of N ×N unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time are concerned, giving rise to various limit processes, in relation to the geometric construction of the unitary Brownian motion. As an applicat...

متن کامل

Local Spectrum of Truncations of Kronecker Products of Haar Distributed Unitary Matrices

We address the local spectral behavior of the random matrix Π1U ⊗kΠ2U ⊗k∗Π1, where U is a Haar distributed unitary matrix of size n×n, the factor k is at most c0 logn for a small constant c0 > 0, and Π1,Π2 are arbitrary projections on l n k 2 of ranks proportional to n. We prove that in this setting the k-fold Kronecker product behaves similarly to the well-studied case when k = 1. AMS Subject ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017